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 In this paper, using written responses of 37 PSTs preparing to teach grades 1-8 

mathematics, we examined explanations they constructed to support their 

problem solutions and explanations they provided in support of their critiques 

of student-generated explanations. We also examined features of explanations 

on which PSTs drew in their critiques of mathematical explanations of 

students. Our results draw attention to the importance of helping PSTs 

develop competencies in constructing and critiquing mathematical 

explanations concurrently. Although explanations PSTs generated for their 

critiques of student explanations were weaker compared to the explanations 

PSTs formulated for their own problem solutions, PSTs proficient in 

generating mathematical explanations were also more proficient in analyzing 

and critiquing mathematical explanations. We identified seven criteria PSTs 

used while analyzing and critiquing student-explanations. These criteria reveal 

what PSTs might value, or pay attention to, as they critique student-

explanations. We share implications for mathematics teacher educators to 

consider and suggest directions for further research. 
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Introduction 

 

Although not unanimously defined in the mathematics education literature, explanations and justifications are 

frequently viewed as connected practices through which students should engage with mathematics content 

(Australian Curriculum and Assessment Reporting Authority [ACARA], 2015; National Council of Teachers of 

Mathematics, [NCTM], 2000; National Governors Association Center for Best Practices & Council of Chief 

State School Officers [NGA & CCSSO], 2010). Included in curricular documents are expectations that students 

―explain and justify their thinking and learn how to detect fallacies and critique others‘ thinking‖ (NCTM, 2000, 

p. 188). These practices promote conceptual understanding because they serve as a vehicle for representing 

internal processes of reasoning and making sense of mathematics (Cross, 2009; Francisco, 2013).  

 

Creating explanations that go beyond simple descriptions of steps and procedures allows students to clarify 

aspects of mathematical thinking that might not be readily apparent to others, providing them with an 

opportunity to articulate and revise their mental models (Chi, 2000). Prediger and Erath (2014) shared that 

formulating explanations facilitates ―building and connecting knowledge in a systematic, structured way by 

linking an explanandum (i.e., the issue that needs to be explained) to an explanans (i.e., by which the issue is 

explained).‖ Others argued that engaging students from early grades on in producing and evaluating 

mathematical explanations helps them develop the kind of mathematical thinking that supports the ability to 

construct proofs (e.g., Bicknell, 1999) and reason about proofs (e.g., Hodds, Alcock, & Inglis, 2014).  

 

Generating and critiquing mathematical explanations are complex practices that are not easy for students. They 

require that a student connects their evidence to the relevant information and effectively communicates their 

understanding using evidence to evaluate and revise claims. Focusing on mathematical explanations in the 

context of pre-service teachers‘ (PSTs‘) education is warranted. Both competencies (providing and critiquing 

explanations) help PSTs to advance the mathematical agenda within their classrooms. Teachers who develop 

these competencies are positioned to guide their students‘ mathematical development, support and scaffold 

student learning, and promote the growth of students‘ reasoning and mathematical understanding (Hoover, 

Mosvold, Ball, & Lai, 2016; McClain, 2009).  
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Mathematical Explanations as Arguments 
 

In the mathematics education literature, the terms mathematical explanation and argument are not clearly 

defined. The relationship between explanations and arguments is also not clear. Some researchers interpret 

explanations and arguments as two separate entities delineated by their purpose (e.g., Yackel, 2004). They 

portray explaining as giving a description of an aspect of mathematical thinking, steps taken to solve a problem, 

or a mathematical statement. They portray constructing an argument as giving reasons that justify a claim, a 

mathematical procedure, result, or respond to challenges. Others distinguish between descriptive explanations, 

ones that answer the how questions, interpretative explanations, ones that clarify the statement to bring up its 

central meaning, and thus address the what questions, and reason-giving explanations which supply answers to 

the why questions (e.g., Hafner & Mancosu, 2005). Yet, others share the notion of explanations as arguments 

that provide meaning and reasons for that meaning (e.g., Balacheff, 2010; Evens & Houssart, 2004; Esmonde, 

2009; Hanna, 2000; Krummheuer, 1995; Levenson, 2013; Levenson & Barkai, 2013; Morselli & Levenson, 

2014; Prediger & Erath, 2014; Stacey & Vincent, 2009). They conceptualize explanations as a way of 

communicating meaning and providing grounds, evidence, and reasons for why a statement being explained is 

true, or not. In the process of explaining, one describes one‘s thinking, result, insight, and gives evidence and 

reasons to justify a plausibility of a process, result, or strategy.  

 

Mathematical explanations are often conceptualized as arguments in the K-8 curricular materials, as exemplified 

by the use of the phrase ―explain and justify.‖ Within the K-8 curricular materials, this phrase is frequently used 

as a request for students to generate mathematical arguments (Bieda, Ji, Drwencke, & Pickard, 2014; Dolev & 

Even; 2015; Stacey & Vincent, 2009). This phrase choice might be deliberate to make explicit for the students 

that they need to move beyond providing merely procedural or interpretative explanations towards reason-giving 

explanations. It might also be used deliberately as a reference to a broad range of arguments and ways of 

reasoning, and to distinguish arguments that do not qualify as proofs from arguments that could be accepted as 

proofs. For example, in their survey of the 7
th

-grade Israeli mathematics textbooks, Dolev and Even (2015) 

identified that curricular tasks that intend to engage students in mathematical argumentation asked students to 

explain and justify their work or a mathematical claim stated in the textbook. Bieda et al. (2014) made a similar 

observation analyzing a collection of upper-elementary mathematics textbooks used in the U.S. Bieda and 

colleagues identified that curricular materials that foster student engagement in generating mathematical 

arguments (both proof-like and not) prompted for explaining and justifying why a claim, conjecture, or 

statement is true.  

 

The notion of mathematical explanations as arguments is also present in the literature that addresses teaching 

strategies and teacher actions that contribute to engaging students in learning mathematics content with a focus 

on mathematical argumentation (e.g., Choppin, 2007; Esmonde, 2009). Choppin, for example, discussed the 

complexity of teacher actions that support students‘ mathematical argumentation in class discussions. He shared 

that while teachers make in-the-moment decisions to purposefully support students‘ learning, they need to 

decide which ―students need to elaborate on their explanations in order to determine warrants in their claims,‖ 

consider the ―quality of the evidence presented for each [student-generated] explanation,‖ or consider ―the 

mathematical ideas embedded in each individual explanation‖ (p. 309). 

 

In our work with PSTs, we conceptualize mathematical explanations as arguments that communicate meaning 

drawing on evidence and reasons (as opposed to providing a description of a procedure). In this paper, we 

discuss mathematical explanations in the context of problem-solving and use the term explanation to represent 

an evidence-based argument for a solution to a problem; one that provides meaning and justifies the solution. 

We also use the term explanation to represent evidence-based argument, which provides meaning and justifies 

one‘s critique of problem solution in the context of analyzing a student-generated explanation. Our 

interpretation of mathematical explanation in the context of problem-solving is consistent with descriptions of 

Chi, Bassok, Lewis, Reimann, and Glaser, (1989) who saw an explanation of a problem solution as a statement 

which either overtly or covertly articulates meaning expounding why a strategy or result makes sense.  

 

 

Relevant Research on PSTs’ Argumentation Skills 
 

Prior research in the area of mathematical argumentation includes studies conducted primarily within the proof-

related research paradigm. This body of research largely explored PSTs‘ conceptions of mathematical 

argumentation and their argumentation skills from the perspective of proof (e.g., Boyle, Bleiler, Yee, & Ko, 

2015; Felton, 2007; Martin & Harel, 1989; Morris, 2007; Stylianides G. & Stylianides A, 2009). Some 

researchers studied PSTs‘ proof-related knowledge with a focus on specific proof methods (e.g., Stylianides, 
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Stylianides, & Phillippou, 2007). Others focused on pedagogical content knowledge exploring teacher actions 

and strategies that facilitate student engagement with proof-related tasks (e.g., Bostic, 2016) or PSTs‘ ability to 

evaluate student-generated arguments with a focus on proofs and proving (e.g., Morris, 2007). Collectively this 

body of research generates important insights into our understanding of mathematical argumentation, 

specifically as it relates to proofs in the context of PSTs preparation, but it also raises questions.  

 

First, building a comprehensive understanding of PSTs‘ argumentation skills requires expanding the research 

focus to include a broader range of arguments, such as earlier discussed evidence-based explanations. 

Stylianides A. and Stylianides G. (2009) argued for research that attends to different tasks and situations in the 

context of which PSTs‘ ability to write and critique a broad range of mathematical arguments is explored. 

Expanding the research focus beyond the proof-related research paradigm allows for generating a more 

ubiquitous understanding of mathematical argumentation in the context of PSTs‘ education. 

 

Second, past research that addressed PSTs‘ competencies in writing and evaluating proofs brings attention to 

and raises questions about the relationship between PSTs‘ abilities to generate and evaluate mathematical 

arguments. By their design, past studies that explored PSTs‘ conceptions of proof did so by asking PSTs to 

either write or evaluate arguments from the perspective of proof. For example, having PSTs analyze researcher-

provided arguments, Martin and Harel (1998) documented that PSTs‘ conceptions of proofs were influenced by 

an argument form or the mode of argumentation. The participants in their study frequently identified proofs 

based on their perceived argument sophistication or conventions they viewed as associated with proofs. 

Stylianides A. and Stylianides G. (2009) explored how elementary PSTs make sense of proofs as they first 

construct them on their own, and then evaluate their proofs. Their research revealed that most of their 

participants were able to provide an accurate assessment of the arguments they generated. Even if they failed to 

generate a proof, they were able to recognize and correctly assess the limitations of their arguments. Working 

with PSTs preparing to teach elementary, middle, or high school mathematics, Felton (2007) asked them to 

define a proof and then use their definition to analyze and identify proofs in a sample of student-generated 

arguments. His study revealed vast differences between PSTs‘ conceptions of proof (as identified in their 

definitions), and how they operationalized their conceptions (as identified in their analyses of student-generated 

arguments to identify proofs). While these studies generate an understanding of PSTs‘ conceptions of arguments 

that prove and their ability to analyze and assess proofs, researchers did not explore a possible relationship 

between PSTs‘ ability to generate and their ability to assess proofs (or broader mathematical arguments that 

might not necessarily be accepted as proofs). PSTs‘ broader argumentation skills need then to be explored with 

concurrent attention to their argument-construction and argument-evaluation skills and a possible relationship 

between the two.  

 

Finally, building a comprehensive understanding of PSTs‘ argumentation skills requires also insights into the 

characteristics of student arguments on which PSTs draw and use as evidence in their assessments. To date, 

research that examined criteria PSTs use in their assessment of student-generated arguments is scarce. Nardi, 

Biza, and Zacheriades (2012) studied how practicing teachers evaluate students‘ written responses in a broader 

context of problem-solving and examined arguments that teachers made about students‘ solutions. They 

reported that teachers did not evaluate student arguments on strictly mathematical grounds. Teachers‘ judgments 

and evaluations were frequently influenced by personal, pedagogical, professional, or curricular views that 

teachers used to rationalize their assessments. While Nardi and colleagues‘ results describe practicing secondary 

school teachers, Morris (2007) shared similar results reporting on a variety of criteria elementary school PSTs 

use while asked to assess students‘ arguments. Unlike Nardi and colleagues who engaged teachers in assessing 

students‘ written arguments, Morris engaged PSTs in analyzing and evaluating arguments elementary school 

students generated in class discussions. PSTs used discussion transcripts, which captured how students 

collectively proved pattern generalizations. Morris identified a wide range of, often not-mathematically based, 

criteria PSTs used to judge students‘ arguments in classroom discussions; they frequently judged student 

arguments based on their perception of the level of student‘s understanding or engagement (e.g., whether a 

student experimented, defended the presented solution). Little is known about criteria PSTs might use while 

asked to critique students‘ written arguments.  

 

 

Research Questions 
 

As suggested by prior research, building a comprehensive understanding of PSTs‘ argumentation skills requires 

concurrent attention to PSTs‘ argument-construction and argument-critique skills and understanding of a 

possible relationship between these skills. It also requires an understanding of the features of student arguments 

on which PSTs draw (and which they use as evidence) as they critique student arguments. Our work extends 
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current research on PSTs‘ argumentation skills by focusing on their explanations in the context of problem-

solving. We selected problem-solving as a context for our research because problem-solving constitutes an 

important aspect of the elementary school mathematics curriculum. Francisco and Maher (2005) emphasized 

that problem-solving can provide a context for engaging K-8 students in explaining and justifying their 

reasoning. In the context of problem-solving, students can learn the practice of explaining and convincing others 

of the validity of their ideas and develop skills of critically examining and evaluating arguments and ideas 

shared by their peers. Our decision of situating this work in the context of problem-solving was also motivated 

by opportunities we saw in bringing PSTs‘ attention to problem-solving as a context for engaging in 

mathematical argumentation, specifically in the elementary grades. To this end, situating our research in a 

semester-long problem-solving course, we explored (1) mathematical explanations PSTs provide to support 

their problem solutions (i.e., arguments they generate in support of their solution to a problem); (2) explanations 

they provide in support of their critique of student-generated explanations (i.e., arguments they generate in 

support of their assessment of explanations the analyze and critique); and (3) the specific features of student-

generated explanations PSTs emphasize as they critique student explanations. The specific research questions 

were:  

1. How does the quality of explanations PSTs formulate to support their problem solutions compare and 

relate to the quality of explanations they provide to support their critique of student-generated 

explanations?  

2. What specific criteria do PSTs use as they critique student-generated written explanations?  

 

 

Assessing the Quality of Mathematical Explanations  
 

Mathematics education researchers frequently draw on Toulmin‘s (1958/2003) model to study a broad range of 

mathematical arguments in different contexts: group interactions (e.g., Krummheuer, 1995; Wagner, Smith, 

Conner, Singletary, & Francisco, 2014), individuals‘ written (e.g., Evens & Houssart, 2004) or verbal arguments 

(e.g., Knipping, 2008), and development of an argument from informal towards a valid proof (e.g., Stylianides 

G. & Stylianides A., 2009; Weber & Alcock, 2005). Toulmin described six interrelated components of an 

argument: a claim, data, warrant, backing, modal qualifier, and rebuttal. The claim (conclusion) is the assertion 

made about an issue. Data embrace the relevant to the claim evidence that provides the foundation for the claim. 

The warrant and the backing justify the connection between the data and the claim by providing a rationale for 

why the data support the claim; the backing serves as additional support for the warrant. The modal qualifier 

expresses the degree of confidence. And finally, the rebuttal includes a rejection of a claim providing support for 

a counter-argument. Given that not all six components are consistently present in every argument, Krummheuer 

(1995) argued that the reduced model: claim, data, and warrant together with backing (if present) could be 

effectively used to analyze student-generated arguments.  

 

The reduced Toulmin‘s model has been frequently employed in mathematics education research. However, 

many researchers recognize the model‘s limitations. One of the challenges is that the model does not account for 

one‘s conceptual understanding of a situation, a phenomenon of interest that provides a context for an argument 

(Pedemonte & Balacheff, 2016; Yopp, 2015). To generate or to evaluate mathematical arguments, one must 

understand the context. For example, Pedemonte and Balacheff (2016) argued that students‘ conceptions (which 

they defined as situated mental constructs, an understanding of a situation or problem context) strongly impact 

the activity of argumentation. Yopp (2015) asserted that one‘s conceptual insights might impact how one 

derives at a conclusion, generates the data, and uses the data as a support for the claim. Pedemonte and 

Balacheff, and Yopp proposed to enhance Toulmin‘s model to account for the knowledge system at the basis of 

argumentation.  

 

As previously discussed, we interpret explanations in the problem-solving context as evidence-based arguments 

that give meaning and justify problem solution (or a critique of a problem solution, in case of explanations PSTs 

generated for their assessment of student explanations). We also use the reduced Toulmin‘s model as a guide for 

our analysis of PSTs‘ explanations. Like Pedemonte and Balacheff (2016) and Yopp (2015), we augment the 

model to account for PSTs‘ understanding (of the problem situation, articulated evidence, and solution strategy) 

from which the written explanation stems, as revealed in the problem explanation or explanation critique. 

Accordingly, we define the quality of mathematical explanation in both contexts (i.e., generating an explanation 

for a problem solution and generating explanations for one‘s critique of explanation given by a student) in terms 

of the quality of four interrelated components that collectively contribute to its strength: a conclusion, 

supporting evidence (data), articulated reasoning (warrants and backing), and conceptual reference that 

provides the basis for explanation. We further examined the existing mathematical education literature (e.g., 

Banes, Lόpez, Skubal, & Perfecto, 2017; Forman, McCormick, & Donato, 1997; Kline & Ishii, 2008; Lepak, 
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2014; Reid & Zack, 2009; Wall, Selmer, & Bingham Brown, 2016) for descriptions of the quality of each of the 

four components. Our operational definitions of the four components contributing to the overall strength of 

mathematical explanation, derived from the surveyed literature, are summarized in Table 1. 

 

Table 1. Components Contributing to the Strength of Mathematical Explanation 

Explanation 

Component 

Generating Explanation for a Problem 

Solution  

Generating Explanation in Support of an 

Assessment of Analyzed Explanation 

Description Operational definition 

of component quality 

Description Operational definition 

of component quality 

Conclusion 

(C) 

Final and 

intermediate results 

Explanation for a 

problem solution 

includes clearly 

articulated and correct 

final and intermediate 

results  

 

Statement that 

provides an 

assessment of 

analyzed 

explanation 

Explanation critique 

includes well-

articulated and valid 

statements about 

analyzed explanation 

 

Supporting 

Evidence 

(SE) 

Facts (stated or 

derived) that provide 

the foundation for 

the conclusion 

Explanation for a 

problem solution 

includes 

comprehensive, 

correct, and relevant 

evidence in support 

for the conclusion. 

The evidence 

supports all cases 

within a given 

problem situation, and 

it is transparently 

articulated 

 

Observations, 

statements 

identified within 

analyzed 

explanation used 

in support of ones‘ 

assessment of 

analyzed 

explanation 

Explanation critique 

is supported by 

comprehensive, 

relevant, and valid 

evidence. The 

evidence is 

transparently 

articulated 

 

Reasoning 

(R) 

Links articulated 

within a problem 

explanation which 

show why the 

evidence supports 

the claim 

Explanation for a 

problem solution 

provides logical and 

plausible connections 

which validly justify 

why the evidence  

supports the 

conclusion 

 

Links articulated 

within an 

explanation 

analysis that show 

why the evidence 

supports the 

explanation 

assessment  

Explanation critique 

shows logical and 

specific connections 

between discussed 

evidence and the 

assessment of 

analyzed explanation  

 

Conceptual 

Reference 

(CR) 

Demonstrated 

understanding that 

provides the basis for 

problem explanation 

Explanation for a 

problem solution 

documents one‘s 

understanding of the 

problem and 

embedded concepts 

and relationships  

Demonstrated 

understanding of 

reasoning on 

which the analyzed 

explanation rests 

Explanation critique 

documents one‘s 

understanding of 

strategies and 

reasoning that provide 

the basis for analyzed 

explanation 

 

 

Method 
 

Participants and Study Context  

 

This research was conducted at a large, private university in the Midwestern United States. In this paper, we 

report on data collected in the mathematics course for elementary and middle grades education majors. 

Participants (n = 37) were grades 1-8 teaching license candidates enrolled in two sections of that course. Both 

sections of the course were taught by the same instructor.  

 

The one-semester course—Problem Solving and Reasoning for Teachers—was designed to support PSTs‘ 

understanding of mathematical argumentation, reasoning, and proof in the context of school mathematics. The 
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75 minutes long class sessions were scheduled twice a week for 14 weeks. As a part of the larger project, we 

collected information about class instruction (e.g., video-records of class sessions, field notes, instructional 

materials, PSTs‘ work samples). Below, drawing on our semester-long observations, we describe the course and 

the major instructional activities in which PSTs were engaged.  

 

Throughout the semester, in the context of solving a large variety of problems, PSTs were engaged in generating 

and critiquing mathematical arguments. To provide them with language for class discussions and to help them 

understand the class expectations, at the beginning of the semester PSTs were introduced to the Toulmin‘s 

(1958/2003). In the context of the initial class activities, they analyzed several samples of written problem 

explanations and explicitly discussed (embedded in those explanations) claims, evidence, and reasons. They also 

discussed the quality and sufficiency of evidence and reasoning identified within the explanations they analyzed 

and critiqued. 

 

In a typical class, PSTs spent about 30-40% of class time solving a variety of problems for which they generated 

explanations. They spent about the same amount of typical class time on activities that engaged them in 

evaluating and critiquing mathematical explanations shared in class, including analyzing the instructor-provided 

samples of written explanations of middle school students. In small groups, they discussed and shared their 

explanations for homework problems or class problems, which then individual PSTs presented and offered for 

class discussions. The problems addressed a wide range of mathematical topics providing PSTs with an 

opportunity to explore various strategies and ways of mathematical reasoning.  

 

In the context of each problem, PSTs were explicitly asked to support claims they generated for each problem 

with evidence and reasons. The goal of class discussions and presentations was twofold: (a) to heighten PSTs‘ 

awareness of reasoning of others in the context of the problems they solved, and (b) help them see how different 

ways of thinking about a problem generate different evidence and reasons in support of the given problem 

solution. Class discussions explicitly addressed explanation quality: e.g., What makes this explanation relevant 

or effective? What evidence is provided to support the given assertion? Is the evidence credible? Does it stand 

for any challenge? Does it present an unbroken chain of reasoning? Is it generalizable beyond specific examples 

or problem situations? Does this explanation provide the meaning for mathematics? Does it have any gaps and 

holes? The purpose of these activities was to strengthen PSTs‘ ability to write and critique mathematical 

explanations with a focus on claims, supporting evidence, and sufficiency and validity of reasoning that links 

the evidence to identified claims. 

 

 

Data Sources  

 

Data for this study comes from PSTs‘ written responses to six parallel tasks for which they had to develop 

problem solutions and provide explanations (DME tasks), and analyze and provide explanations for their 

critique of mathematical explanations generated by students (AME tasks). Both types of tasks were designed to 

facilitate generating claims, providing evidence, justifying claims, and thinking about generality. The DME 

tasks were typical of those found in the elementary or middle school mathematics textbooks. The AME tasks 

(selected from the existing literature or instructor‘s own resources) required the PSTs to explain their critique of 

analyzed sample explanations generated by elementary or middle school students.  

 

For both types of tasks, PSTs were explicitly asked to provide support for their response. For the DME tasks, 

they were asked to explain and justify their solutions by giving support for why their strategy and their results 

are correct. The AME tasks prompted PSTs to (a) examine and describe student strategies and reasoning, (b) 

critique provided explanation(s) and provide support for their critique using evidence from the analyzed work, 

and (c) suggest revisions that would enhance the strength of the analyzed explanation. The AME tasks included 

between one and four student responses to expose PSTs to a variation of claims, evidence, and reasoning within 

student-generated explanations. For the AME tasks with more than one student-generated explanation, we also 

asked PSTs to rank the set of explanations providing a specific rationale for their ranking.  

 

We presented these tasks in the context of practice-based pedagogical situations, engaging PSTs in ―making the 

case‖ for their solution or their critique of analyzed explanation. Task examples are presented in Figure 1 and 

Appendix A.  As discussed earlier, our goal was to compare the quality of mathematical explanations PSTs 

produced in support of their problem solutions and the quality of explanations they generated for their 

assessment of student explanations. For consistency of comparisons, we then situated all tasks in the same 

mathematical domain that addressed thinking about fractions, percents, and proportions.  
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Figure 1. Sample DME (1) and AME (2) Tasks (see Appendix A for Other Examples) 

 

 

Data Analysis  

 

Research Questions 1 

 

We first examined PSTs‘ responses to each DME and AME task and developed task-specific rubrics to assess 

the four components of interest (see Table 1). For each task, in the rubric development stage, we discussed 

PSTs‘ responses to identify three-point criteria for scoring the quality of each of the four components. One of 

the authors and a trained research assistant applied developed rubrics to independently code PSTs‘ responses. 

Cohen's κ was computed to determine the level of agreement between the two raters on each of the four 

components of explanation quality for each group of tasks. For the DME tasks, the overall level of agreement 

was 0.92, p < 0.05 (range 0.77 – 1); for the AME tasks, the overall level of agreement was 0.93, p < 0.05 (range 

0.83 – 1). We continued our analyses upon reaching 100% agreement that our coding reliably represents our 

assessment of PSTs‘ explanations for both types of tasks. We illustrate our scoring using PSTs‘ responses to the 

DME tasks. Consider PST #15‘s and PST #1‘s responses, included in Figures 2 and 3, to the ―Sweater‖ task 

presented in Figure 1. We use these responses to illustrate our rubric and our scoring for the DME tasks. (See 

Appendix B for AME task scoring rubric). 

 

 
Figure 2. PST #15‘s Explanation (―Sweater‖ DME Task) 
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Figure 3. PST # 1‘s Explanation (―Sweater‖ DME Task) 

 

Conclusion (C). We examined each explanation with a focus on the articulated results. If the included results 

were complete and correct (i.e., the PST reached the correct final and intermediate results), we scored the 

explanation as (3). Consistent with our rubric, if the explanation included the correct final result with minor 

errors, we scored the explanation as (2). Finally, we scored an explanation as (1) if the final problem solution 

was incorrect regardless of the correctness of the intermediate results.  On the C-component, we rated both PSTs 

explanations as (3) because both PSTs correctly determined the final profit. PST #15 reached this conclusion 

under the assumption that the original price was $10. While her solution was limited to this specific case, her 

intermediate and final results were correct. PST #1reached the same conclusion assuming the original price, x, to 

be any price.  

 

Supporting Evidence (SE). With a focus on the quality of supporting evidence, we rated each explanation as (3) 

if the included evidence was comprehensive, that is, supported all cases within a given problem situation, was 

explicitly articulated, relevant, and mathematically correct to support the conclusion. We rated an explanation as 

(2) if the provided evidence was correct but incomplete (e.g., supported only specific cases within a given 

problem situation, or some mathematical results were missing). Finally, we rated explanations with missing or 

only minimal evidence as (1) (e.g., results were reached in the process of guessing and checking).  Consider 

again PST #15‘s and PST #1‘s explanations (Figures 2 and 3). Both PSTs provided a complete chain of 

evidence in support of their result. The evidence PST #15 generated supported one specific problem case, 

namely the case of the original price being set at $10. In that sense, PST #15‘s evidence was limited. Therefore, 

on the SE-component, we scored her explanation as (2). The chain of evidence included in PST #1‘s explanation 

was comprehensive in the sense that it supported the problem conclusion regardless of the initial price. Thus, 

consistent with our rubric on the SE-component, we scored PST #1‘s explanation as (3).  

 

Reasoning Articulated within an Explanation (R). We rated each PST‘s explanation as (3) if he or she clearly 

linked the chain of stated evidence to the conclusion validly justifying why the evidence supports the conclusion 

rather than stating how he or she arrived at the conclusion. We rated each explanation on the R-component as 

(2) if the PST only partially justified why the evidence supports the stated conclusion. Finally, we rated an 

explanation as (1) if the PST did not include any justification for why the provided evidence supports the 

conclusion. We also rated an explanation as (1) if any justification attempt(s) were limited to the empirical 

testing of the conclusion. Once again, consider PST #15‘s and PST #1‘s responses. On the R-component of 

explanation quality, we assessed both explanations as (1). PST #15 only articulated what he or she was doing to 

solve the problem, rather than explaining why her strategy and any results she generated are valid. Her solution 

depended on unstated truth that the profit, as a percentage, is independent of the chosen price. We interpreted 

her conclusion as being empirically derived rather than validly justified. We also scored PST #1‘s explanation 

on the R-component as (1). While we recognized that PST #1 attempted to provide some justification (e.g., by 

articulating why to subtract the original price from the sale price: ―You need to subtract 1x from the sale price 

because the store already paid x while they bought the shirt‖) she or he predominantly articulated what she was 

doing without justifying links between the chain of evidence she generated to her stated conclusion.  

 

Conceptual Reference (CR). Consistent with our operational definition (Table 1), we rated each explanation on 

the CR-component as (3) if the explanation revealed that a PST demonstrated a conceptual understanding of 

relevant mathematical ideas, strategies, and any relationships needed to make the case for the general solution to 
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the problem. We rated an explanation as (2) if the explanation revealed that the PSTs‘ understanding of the 

problem, its solution, relevant mathematical ideas, strategies, or relationships within the problem were limited to 

only a specific problem case. Finally, we rated an explanation on the CR-component as (1) if, within the 

provided explanation, the PST did not articulate an understanding of mathematical concepts, procedures, or 

relationships needed to ―make the case‖ for the solution to the problem.  

 

As illustrated in PST #15‘s and PST #1‘s explanations, both PSTs demonstrated a conceptual understanding of 

the problem and the embedded relationships. PST #15 demonstrated this understanding within only one specific 

problem case. In her explanation, PST #15 motivates selecting $10 for the initial price by saying, ―so I can have 

a number to work with.‖ She does not explicitly articulate that the percent profit is independent of the initial 

price, to show her conceptual awareness that her specific choice for the initial price will not affect her 

conclusion for any price. Thus, on the CR-component, we scored PST #15‘s explanation as (2). PST #1 

conceptualized the problem situation broadly by considering all possible classes of problem situations, as 

exemplified in her statement ―take some original price, x.‖ Her statement suggests that she conceptualized the 

problem solution independently of any specific price. On the CR-component then, we assigned PST #1‘s 

explanation a score of (3).  

 

In this round of the analysis, we also examined and scored PSTs‘ responses to the AME tasks which asked PSTs 

to provide explanations for their critique of student-generated explanations. For the AME tasks, to answer RQ 1 

we analyzed explanations PSTs generated in support of their assessment of student explanations, together with 

their interpretations of student strategies and reasoning. (See AME tasks prompts (a) and (b). In the context of 

the AME task responses, we also scored each identified component of PSTs‘ explanations (see Table 1) on a 3-

point scale. The Scoring rubric used for scoring PSTs‘ responses to the AME tasks is included in Appendix B.  

 

Measuring Explanation Quality. We defined the strength of PSTs‘ explanations on each task (in the context of 

providing problem explanations and in the context of providing explanations for their critique of student-

generated explanations) with a focus on each explanation component as a ratio of the raw score the PST 

received for that component (range 1–3) and a maximum possible score (max 3). Similarly, we defined the 

overall quality of PSTs‘ explanations for each DME and AME task as a ratio of the sum of the scores a PST 

received for each explanation component and the maximum possible score for the four components (max 12). 

To answer our first research question, we compared mean scores across the DME and AME tasks for the Overall 

Explanation Quality (O), Conclusion (C), Supporting Evidence (SE), Reasoning (R), and Conceptual Reference 

(CR) using the repeated measures ANOVA test. We then conducted correlation analysis (Pearson correlation 

test) to determine a possible association between PSTs‘ overall competency in generating mathematical 

explanations and their competency in analyzing and critiquing mathematical explanations.     

 

 

Research Question 2 

 

To answer our second research question, we further examined PSTs‘ responses to all AME tasks. Specifically, 

we analyzed PSTs‘ explanations of their assessment of analyzed explanations, together with possible revisions 

they proposed, and their ranking of analyzed explanations. See the description of the AME task prompts (b) and 

(c). This time, our focus was on specific features of student-generated explanations that PSTs noticed and 

addressed in their analyses. We used qualitative methods and open coding (Miles & Huberman, 1994) to 

identify different ways in which PSTs perceived and examined the strength of student-generated explanations.  

We parsed each response into meaning segments (words, phrases, or sentences) that conveyed PSTs‘ 

interpretations and judgments of student-generated explanations. This stage of data analysis comprised multiple 

passes through the data, during which each response was carefully annotated. We illustrate this process in 

Figure 4 with an excerpt from PST #15‘s analysis for the ―Iced Tea‖ AME task (see Appendix A). For this task, 

the PSTs were asked to analyze and critique a sample of four student-generated explanations. In the excerpt 

below, PST #15 discusses the explanations presented by two of the four students.  

 

Annotations were systematically compared and contrasted within and across PSTs‘ responses. Our goal was to 

delineate the meaning segments, identify their similarities, revise and collapse segment descriptions into codes, 

establish definitions for codes, and check for overlaps between emergent codes. Emergent themes were grouped 

into common criteria that discerned how the PSTs perceived and critiqued explanations. The initial descriptive 

codes and the resulting final coding categories are presented in Appendix C. In the subsequent rounds of 

analysis, we grouped those 27 codes into the final six categories that represented criteria (lenses) through which 

PSTs analyzed and critiqued student explanations. We then tabulated and compared code frequencies across all 

AME tasks to identify the overall patterns across PSTs‘ responses (z test for proportions). The six criteria 
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(lenses) through which PSTs examined student explanations, along with our discussion of observed patterns, are 

presented in the results section.  

 

 
Figure 4. Excerpt of PST #15‘s Solution Analysis (Iced Tea AME task) 

 

 

Results 
 

RQ 1. How Does the Quality of Explanations PSTs Formulate to Support their Problem Solutions 

Compare and Relate to the Quality of Explanations they Provide to Support their Critique of Student-

Generated Explanations?  
 

A comparison of the overall quality of PSTs‘ problem explanations (DME tasks) and explanations for their 

critiques of student-generated explanations (AME tasks) revealed that the AME scores were significantly lower 

while compared to the DME scores. The repeated measures ANOVA test showed that the group means for DME 

and AME tasks overall, and on each component of explanation strength were statistically significantly different; 

FO (1, 36) = 55.496, p < 0.00; FC (1, 36) = 5.505, p < 0.05; FCR (1, 36) = 33.754, p < 0.01; FSE (1, 36) = 113.970, 

p < 0.01; FR (1, 36) = 34.736, p < 0.01. A summary of group means overall, and for each component of 

explanation strength for DME and AME tasks are included in Table 2. For each measure, the mean difference 

was statistically significant at the 0.05 level.  

 

Table 2. Comparison of Group Means across all DME and AME Tasks and for each Component of Explanation 

Quality 

Measure DME AME Mean Difference Significance 

  ̅, (SE)  ̅, (SE)   

Overall 0.739 (0.022) 0.572 (0.023) 0.167 p < 0.01 

 

C 0.747 (0.022) 0.676 (0.028) 0.072 p < 0.05 

 

SE 0.773 (0.025) 0.532 (0.022) 0.241 p < 0.01 

 

R 0.665 (0.029) 0.523 (0.025) 0.142 p < 0.01 

 

CR 0.773 (0.025) 0.580 (0.031) 0.193 p < 0.01 

 

Across all tasks, PSTs‘ scores on generating mathematical explanations were positively correlated with their 

scores on critiquing mathematical explanations. The results were statistically significant at the 0.05 level, r = 

0.501. PSTs who were more proficient in constructing explanations for the problems they solved were also more 

proficient in supporting their critiques of mathematical explanations they analyzed.  
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Moreover, for both types of tasks, PSTs‘ (CR) component scores were positively correlated to their (C) scores, 

(SE) scores, and their (R) scores. For the DME tasks, the respective correlations at the 0.01 level were: CR and 

C scores, r = 0.838; CR and SE scores, r = 0.902; and CR and R scores, r = 0.594. For the AME tasks, the 

respective correlations at the 0.01 level were: CR and C scores, r = 0.644; CR and SE scores, r = 0.654; and CR 

and R scores, r = 0.514. This result suggests that while generating problem explanations and generating 

explanations in support of the assessment of student explanations, PSTs with stronger conceptual understanding 

were overall more proficient in generating evidence, making accurate conclusions, and providing supportive 

reasons linking the provided evidence to stated conclusions.  

 

 

RQ 2. What Specific Criteria Do PSTs Use as They Evaluate and Critique Students’ Written 

Explanations?  
 

Our analysis revealed six criteria that PSTs used while asked to examine and critique student-generated 

explanations, modify, or rank student-generated explanations. These criteria are (1) Correctness, (2) 

Organization, (3) Mathematical Foundations, (4) Communicative Power, (5) Justification, and (6) Generality. 

These criteria capture the specific aspects of student-generated explanations that PSTs identified and addressed 

in their explanation analyses. Below we discuss each criterion and illustrate with excerpts from PSTs‘ 

responses.  

 

Attention to Correctness of Results or Strategy. This criterion of PSTs‘ analyses was discerned from PSTs‘ 

comments about the correctness of results, solution strategy, or execution of steps of a procedure implemented 

to solve a problem that was included in the analyzed explanation. An excerpt from PST #20‘s response provides 

an example: 

Dan has all of the correct work until he tries to figure out the percent profit. They make a profit of $55 

but this is not the percent profit made. He would have to divide 255 by 200 to get 1.275. The 1 stands for 

the amount they paid, so their profit was .275. You have to multiply by 10 [sic] to get it into a percent, so 

it is 27.5%...Dan‘s argument could be challenged by looking at the percent increase he found at the end. 

If you multiply 200 by [0].55 (which is the % increase he found) it gets you 110. If you add it to 200 that 

means the sweater was sold for $310 which is incorrect. But, if you multiply 200 by .275 you get 55 

which if you add that to 200 it gets you $255 which is what the sweater was sold for. So, this disproves 

his argument. (Sweater AME). 

 

Attention to Organization. Another criterion identified within PSTs‘ explanation critiques was the overall 

organization of explanation. PSTs critiqued student-generated explanations commenting on the step-by-step 

flow of analyzed explanations, or the overall logical progression in which information within the analyzed 

explanation was shared. Excerpts from PST #5‘s and PST #2‘s responses serve as an illustration. PST #5 wrote:  

Dan‘s steps are in a very logical order. He had to find the markup price before he could find the sales 

price.‖ PST #2 observed: ―[Dan‘s response] has a good flow from one step to the next. I am not feeling 

confused as to how he went from one step to the next.  

 

Attention to Foundations. This criterion of PSTs‘ analyses was identified from PSTs‘ comments about the 

transparency with which the explanation articulated the problem and its interpretation, problem-solution, or 

solution processes. Using this criterion, PSTs examined and critiqued student explanations observing and 

commenting on whether or not student explanation is transparent about the meaning of terms, symbols, or 

variables. PST #9‘s response illustrates this lens of critique:  

…Looking at his work, he seems to have the correct steps but one thing that could really help would be 

to write down all the important information first so that we know it….He has the value of x in his 

solution, well, what does the x stand for? He should write down what does the x is representing [sic]. 

(River Barge AME). 

 

Attention to Explanation’s Communicative Power. PSTs who critiqued analyzed explanations with a focus on 

these explanations‘ communicative power examined the clarity with which mathematical ideas, processes, 

calculations, or strategies were articulated within the student‘s explanation. Some PSTs emphasized how well an 

explanation communicated what a student did to solve a given problem. Others focused on completeness of 

analyzed explanations, examined, and commented on whether or not an explanation was comprehensive and 

included enough details. Some PSTs also critiqued explanations analyzing whether the explanation was concise 

or easy to understand. PST #9‘s response provides an example:  

Most people would be confused by reading this [explanation]. I am saying this because when he is 

writing out his equations there are no labels so most people would have no clue as to what these numbers 
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represent and mean. He also didn‘t give much explanation as to how he got there [to the answer] and how 

he even started for that matter. (Sweater AME). 

 

Attention to Justifications. PSTs demonstrated their focus on justification by identifying mathematical 

procedures or results in the analyzed explanations and reflecting on whether or not these results or procedures 

were adequately justified. Excerpts from PST #3 illustrate this focus of explanation critiques:  

He does not do a good job of including why he did what he did. He should explain why he subtracted 340 

– 85, (because 85 dollars was taken off with the 25% discount). He should also justify why he got 55% 

from 55-dollar profit, this is not correct and cannot be correctly justified. (Sweater, AME).  

  

 Attention to Generality. This criterion was operationalized as PSTs‘ awareness of the limitations of case-

specific arguments for the solution to the problem which they recognized in student explanations. PSTs who 

critiqued student explanations with attention to generality explicitly articulated that conclusive evidence needs 

to include all possible cases in the problem domain. They also considered whether or not analyzed explanation 

can be applied to broader classes of problems and used this observation describing why a given explanation 

could be challenged. We illustrate this lens of analysis with an excerpt from PST #21‘s response:  

The challenge is that since he picked a random number, he is not explaining that it could work for all 

other prices. (Sweater, AME) 

 

Table 3 illustrates the PSTs‘ overall focus on each of the six criteria:   

 

Table 3. Distribution of Criteria Identified in PSTs‘ AME Responses 

1 

Correctness  

 

# PSTs (%) 

(n = 37) 

2 

Organization 

 

# PSTs (%) 

(n = 37) 

3 

Foundations 

 

# PSTs (%) 

(n = 37) 

4 

Communicative 

Power 

# PSTs (%) 

(n = 37) 

5 

Justifications 

 

# PSTs (%) 

(n = 37) 

6 

Generality 

 

# PSTs (%) 

(n = 37) 

 

34  

(91.9%) 

 

 

34  

(91.9%) 

 

 

21 

(56.8%) 

 

 

37  

(100%) 

 

 

10  

(27%) 

 

 

13  

(35.1%) 

 

 

All PSTs critiqued student-generated explanations with a focus on explanations‘ communicative power. Almost 

all (92%) also examined sample explanations with a focus on organization and correctness of conveyed results 

or ideas. Less frequently, PSTs critiqued student-generated explanations by attending to mathematical 

foundations (57%), justifications conveyed in the context of explanation (27%), or generality of presented 

results or procedures (35%).  

 

Because our AME tasks were open-ended, i.e., we did not explicitly direct PSTs to comment on, or modify, any 

specific aspects of student explanations, the results reflect what PSTs spontaneously pay attention to as they 

examine and critique student-generated explanations. The identified criteria can also be interpreted as a window 

into the complexity of PSTs‘ explanation analyses and critiques. For example, only about 29% of PSTs used 

five of the above criteria as a lens of their explanation analysis and critique. About a third of PSTs (32%) used 

four different criteria while analyzing sample explanations, and about 27% of our PSTs analyzed and critiqued 

provided explanations with a focus on only two of the above criteria, (4) & (1) or (4) & (2).  

 

The proportion of PSTs who focused their critique on mathematical foundations of analyzed explanations was 

significantly lower compared to the proportion of PSTs who addressed organization, correctness, or 

communicative power in their explanation critiques,  (Foundations vs. Organization or Correctness, 56.8% vs. 

91.9%, z = 3.727, p < 0.01; Foundations vs. Communicative Power, 56.8 % vs. 100%, z = 5.237, p < 0.01). The 

same was true while comparing the proportions of PSTs who critiqued explanations with attention to 

justification and generality of conveyed results or procedures; significantly less PSTs used the lens of 

justification or generality while examining sample explanations compared to the lens of Organization, 

Correctness, or Communicative Power, (Justifications vs. Organization or Correctness, 27% vs. 91.9% 

respectively, z = 7.466, p < 0.01; Justifications vs. Communicative Power, 27% vs. 100% respectively, z = 9.86, 

p < 0.01; Generality vs. Organization or Correctness, 35.1% vs. 91.9% respectively, z = 6.193, p < 0.01; and 

Generality vs. Communicative Power, 35.1% vs. 100% respectively, z = 8.152, p < 0.01).  
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Discussion and Implications 
 

Communicating one‘s understanding through explanation is an essential part of participating in mathematics 

(Hiebert et al., 1997; McClain, 2009) and listening to, and analyzing mathematical thinking (e.g., when a 

student provides mathematical explanation) is one of the central tasks of mathematics teaching (Hoover et al., 

2016; NCTM, 1991). In this study, in the context of a problem-solving course, we examined explanations PSTs 

generated to support their problem-solutions and explanations they provided in support of their critique of 

student-generated explanations. We also identified criteria PSTs used while assessing and critiquing student-

generated explanations. 

 

We aimed to facilitate PSTs‘ learning to write and critique mathematical explanations with a focus on claims, 

supporting evidence, and sufficiency and validity of reasoning that links the evidence to identified claims. We 

planned our instruction intending to increase PSTs‘ awareness of how different ways of thinking about a 

problem generate different evidence and reasons in support of the problem solution. In the context of each 

problem PSTs solved, and each problem explanation they critiqued, we explicitly asked them to support claims 

they generated with evidence and reasons. We also provided them with multiple opportunities to read and 

reflect, individually, during small group or whole-class discussions, on weaknesses and strengths of 

explanations generated by others.  

 

Research Question 1.  A comparison of PSTs‘ DME and AME scores revealed that explanations PSTs generated 

in support of their critique of student-generated explanations were overall weaker while compared to 

explanations they generated for the problems they solved on their own. Given the instructional emphasis on 

providing and critiquing mathematical explanations, we wondered whether some other dynamics were 

obscuring this outcome. First, we believe that PSTs might already have had more practice in generating 

mathematical explanations before coming to our course. We also believe that the course activities focused on 

analyzing and critiquing student-generated mathematical explanations constituted considerably new experiences 

for our PSTs. Research on K-12 curricular materials and students‘ learning opportunities to generate and 

evaluate arguments generally documents limited emphasis on these practices in school mathematics textbooks 

(e.g., Bieda et al., 2014; Thompson, Senk, & Johnson, 2012). The curricular emphasis on problems or activities 

that engage students in analyzing and critiquing mathematical arguments is even more diminished (e.g., Bieda 

et al., 2014). 

 

Second, our course was a first in a 3-course mathematics sequence for PSTs. All PSTs were at the beginning of 

their teacher education program and had overall limited experiences in analyzing student mathematical thinking 

and strategies. Before they could critique student-generated explanations, they needed to understand how 

students reasoned about the problem situation. Research shows that PSTs‘ ability to analyze and make sense of 

student thinking and reasoning is closely related to their professional noticing skills (Zambak & Magiera, 2018). 

While in our work with PSTs during class discussions we placed an explicit emphasis on mathematically 

significant aspects of student explanations; we did not directly focus on supporting PSTs‘ professional noticing 

skills, which could also explain to some extent the overall weaker scores on the AME tasks.  

 

Our analysis revealed a positive relationship between PSTs‘ overall competency in generating mathematical 

explanations (DME scores) and their competency in critiquing explanations (AME scores). PSTs who were 

more proficient in generating mathematical explanations for the problems they solved were also more proficient 

in providing explanations in support of their critique of student explanations. Moreover, our study brings 

attention to the role of conceptual understanding (of the problem or student thinking and strategies embedded in 

student-generated explanations). In the DME and AME tasks alike, CR scores were positively correlated with C 

scores, SE scores, and R scores. PSTs with higher CR scores were more proficient in formulating well-

articulated and valid conclusions, generating supportive evidence, and articulating why their evidence supports 

their claims.  

 

We are not aware of any research that focused on the relationship between PSTs‘ competency in generating 

explanations of the problems they solve and generating explanations to support their critique of student 

explanations. Within the past research in the area of argumentation skills (broadly defined), competencies in 

generating mathematical arguments and critiquing mathematical arguments were mostly studied in isolation 

from one another, and primarily focused on understanding and conceptions of proofs (e.g., Knuth, 2002; Bleiler, 

Thompson, & Krajčevski, 2014). Given the complexity of teacher knowledge, finding ways to integrate the 

essential skills and aspects of teacher knowledge is critical to support the development of PSTs‘ professional 

knowledge and skills (Zambak & Magiera, 2018). Our study suggests that concurrent attention to both 

competencies might be beneficial for supporting PSTs‘ skills in generating and critiquing mathematical 
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explanations. Our work also shows that conceptual understanding (of the problem at hand or student 

explanation) significantly relates to the overall quality of explanations one generates because it is positively 

associated with the ability to generate evidence, formulate accurate conclusions, and provide reasons that link 

the evidence to stated conclusions.  

 

Research Question 2. We uncovered six criteria that PSTs used to critique student explanations: Correctness, 

Organization, Mathematical Foundations, Communicative Power, Justification, and Generality. These criteria 

describe the nature of the evidence which PSTs‘ identified in student-generated explanations they examined, and 

on which they drew in their critiques. Our PSTs most frequently examined student explanations with a focus on 

Correctness, Organization, and Communicative Power. Less frequently they attended to mathematical 

Foundations (which may also include any assumptions that underlie the solution to the problem), Justifications, 

and Generality of analyzed explanations. Even though our PSTs were systematically engaged in class 

discussions that engaged them in reflections on the quality of justifications and generality of discussed solutions, 

most of the PSTs did not address these aspects in their analyses and critiques of student-generated explanations.  

As discussed in the ―Data Sources‖ section, for the AME tasks, we asked PSTs to carefully examine and 

describe student solution strategy and reasoning, and analyze and critique provided explanation(s) suggesting 

revisions to improve it. As stated earlier, the AME tasks did not explicitly direct PSTs to comment on any 

specific aspects of student explanations. The results reflect what PSTs spontaneously pay attention to as they 

analyze student-generated explanations.  

 

In our study, all PSTs analyzed explanations with a focus on explanation‘s communicative power and almost all 

used correctness and organization as criteria while examining analyzed explanations. It might be more difficult 

for PSTs to recognize and learn to assess student explanations with a focus on generality and the quality of 

justifications than, for example, with a focus on correctness or organization. It is also possible that after PSTs 

identified certain aspect(s) of explanations which provided a focus for their critiques (e.g., correctness, 

organization, communicative power), they simply stopped conducting further analyses and seeking any 

additional support for their explanation critiques. Bleiler et al. (2014) studied written feedback on proofs that 

secondary school PSTs provided to students. They reported that upon identifying first, most noticeable error in 

student‘s proof, PSTs frequently failed to look for any additional aspects of proof on which they could provide 

feedback to the student. It might seem plausible to think that, likewise, upon identifying certain aspect(s) of 

explanations many of our PSTs simply stopped conducting further analyses and did not think about any 

additional aspects of student explanations to address in their critiques.  

 

However, as our analysis revealed, about a third of our PSTs used four of the six identified criteria in their 

explanation critiques, and about an additional third critiqued analyzed explanations with a focus on five of the 

six identified criteria. This result shows that our PSTs‘ explanation critiques were rather complex while 

considering the number of aspects they addressed. While the set of criteria we identified might serve as a tool 

for assessing the growth in PSTs‘ ability to analyze and critique mathematical explanations, it also provides 

insights into aspects of students‘ explanations that PSTs might not routinely consider. Even though our PSTs 

were systematically engaged in class discussions centered on heightening their attention to the quality of 

justifications and generality of discussed solutions, most of the PSTs did not attend to these aspects 

spontaneously when asked to analyze and critique student-generated explanations. Our finding that PSTs do not 

routinely attend to justification and generality while analyzing student-provided explanations is consistent with 

past research. For example, Lo, Grant, and Flowers (2008) reported that many PSTs tend to describe what was 

or needs to be done, rather than think about why it is valid. Morris (2007) similarly found that PSTs who were 

asked to analyze and critique student arguments in the context of classroom discussions used a wide range of 

criteria but rarely focused on the logical validity of analyzed arguments.  

 

The results suggest that PSTs might benefit from activities that explicitly help them recognize different features 

of student-generated explanations. In our current work with PSTs, when we now engage PSTs in analyzing and 

critiquing their mathematical explanations or mathematical explanations of students, we are explicitly directing 

their attention to the specific aspects of explanations that we want them to examine and reflect on (e.g., 

justifications, generality, foundations—which may also include any assumptions that underlie the solution to the 

problem). Our goal is to increase PSTs‘ awareness of a broad range of features that contribute to explanation 

strengths, or weaknesses. By engaging PSTs in analyzing and critiquing student-generated explanations and 

being explicit about features of analyzed explanations they examine, our goal is also to increase PSTs‘ 

awareness of the strength and weaknesses of their explanations they generate, giving them tools to self-critique 

explanations they generate.  
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Final Remarks 
 

To effectively promote the growth of students‘ reasoning and mathematical understanding, PSTs need the 

ability to generate mathematical explanations and critically unpack explanations of their students (Hoover et al., 

2016). In this study, we concurrently explored PSTs‘ competencies in generating problem explanations and the 

explanations they provide in support of their critique of student-generated problem explanations. Our selection 

of participants was limited to PSTs from one institution, and our selection of problems was also limited to 

problems typical of the elementary mathematics curriculum. Building a further understanding of PSTs‘ 

competencies in generating and analyzing mathematical explanations requires future research focusing on a 

broader range of problems and diverse groups of PSTs. To continue unpacking PSTs‘ competencies in 

generating problem explanations and critiquing student-generated explanations, future research might also 

explore different instructional sequences of activities and their effect on the development of PSTs‘ skills in these 

areas. For example, in addition to analyzing and critiquing student-generated explanations, PSTs could be asked 

to reflect on the pedagogical values of their critiques. The goal would be to increase PSTs‘ awareness of 

different aspects of explanations that contribute to an explanation‘s overall strength. At the same time, the goal 

would be to heighten PSTs‘ awareness of characteristics of explanations which they might not routinely 

consider or choose to address in problem explanations they produce or critique (e.g., statement of mathematical 

foundations, assumptions that give rise to the explanation, explanation generality, presence, and validity of 

justification).  
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Appendix A. Additional Task Examples 
 

AME Task: Iced Tea 

 

Mary made some iced tea from a mix, using 12 tablespoons of ice tea mix and 20 cups of water. Chris and 

Greg thought it tasted great, but they needed 30 cups of tea for their party. Frank arrived, and they found 

they disagreed about how to make 30 cups that tasted just the same: 

 

Chris: It‘s easy: Just add 10 tablespoons of tea and 10 cups of water. Includes everything by 10. 

Greg: Wait a minute. 30 is just 1 and a ½ times of 20, so since you add ½ as much water, you should add ½ 

the tea: Add 10 cups of water and 6 tablespoons of tea. 

Mary: I think about it this way: We used 12 tablespoons for 20 cups, so 12/20=3/5 tablespoons for 1 cup, so 

for 30 cups we should use 303/5=18 tablespoons. 

Frank: Wait: 20-12=8, so you want to keep the difference between water and tea at 8. Since there are 30 

cups of water, we should use 30-8=22 tablespoons of tea. That will keep everything the same. 

 

AME Task: Sweater 

 

A clothing store bought a sweater for a certain price and marked it up 70%. The sweater did not sell so the 

store owner took 25% off the marked-up price and sold it for that price. What percent profit did the store 

make? 

 

This is how Dan argued about this problem: 

 

If the store paid for the sweater, for example, $200, the 70% mark-up would be 

     
  

   
     

 

So, the store is first trying to sell the sweater for $200+$140 = $340. 

 

The 25% discount on the store price would be 

 

    
  

   
  
      

   
     

 

That means that they actually sold the sweater for 340 –85 = $255. Since the store bought it for $200 and 

sold it for $255, there is $55 profit. They made 55% profit. 
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Appendix B. Explanation Critique Scoring Rubric 
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Appendix C. PSTs’ Explanation Analyses and Critiques: Initial Codes and Codes 

Grouping 
 

Overall Lens of Explanation Analysis Specific Focus of Explanation Analysis  

The notion of validity (1) Correctness of final results 

(2) Correctness of intermediate results 

(3) Correctness of solution strategy 

(4) Appropriateness of solution strategy 

(5) Correctness of mathematical steps 

 

The notion of organization 

 

(6) Flow of steps 

(7) Completeness; step-by-step 

(8) Logical order of steps 

 

The notion of providing foundations (9) Assumptions about the problem 

(10) Meanings of symbols 

(11) Meanings of variables 

(12) Meanings for representations used 

(13) Articulation of what is/was known 

 

The notion of communicating meaning 

 

(14) Contextualization of results 

(15) Contextualization of strategies 

(16) Contextualization of procedures 

(17) Clarity for understanding  

(18) Easiness for understanding 

(19) Easiness for following 

(20) Conciseness 

(21) Consistency in mathematical notation 

(22) Consistency in language used 

(23) Comprehensiveness 

 

The notion of justification (24) Justification for selected strategy 

(25) Justification for results 

 

The notion of generality (26) Generality of presented strategy 

(27) Generality of presented results 

 

 

 




