Examination of Mathematically Gifted Students Using Data Mining Techniques in terms of Some Variables
761
235
Abstract
In the identification process, there may be gifted students who may be unnoticed or students who are misdiagnosed and are disappointed. In this context, this study is a step that may solve these two problems about the identification of mathematically gifted students with the help of data mining, which is data analysis methodology that has been successfully used in different areas including education. The decision tree model is one data mining technique, which was implemented using students’ learning styles, multiple intelligences and personality types to identify gifted students. The sample size was 735 middle school students (234 mathematically gifted and 501 non-gifted) studying in two different cities in Turkey. The constructed decision tree model with 70% validity revealed that examination of mathematically gifted students using data mining techniques may be possible if specific characteristics are included.
Keywords
Mathematically gifted; Educational data mining; Learning style; Multiple intelligences; Personality Type
Full Text:
PDFReferences
Aksoy, E., Narli, S. & Aksoy, M.A. (2018). Examination of mathematically gifted students using data mining techniques in terms of some variables. International Journal of Research in Education and Science (IJRES), 4(2), 471-485. DOI:10.21890/ijres.428280
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 International Journal of Research in Education and Science
License URL: www.ijres.net
Abstracting/Indexing
International Journal of Research in Education and Science (IJRES)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
ISSN: 2148-9955 (Online)